GENERAL STRUCTURAL NOTES

1. THE STRUCTURAL CONSTRUCTION DOCUMENTS REPRESENT THE FINISHED STRUCTURE. THEY DO NOT INDICATE THE METHOD BY WHICH CONSTRUCTION IS TO BE EXECUTED. THE GENERAL CONTRACTOR IS RESPONSIBLE FOR PROVIDING ALL MEASURES NEEDED TO PROTECT THE STRUCTURE DURING CONSTRUCTION. SUCH MEASURES MAY INCLUDE, BUT NOT BE LIMITED TO, PROTECTION OF FINISHES, SHADING FOR LOADS DUE TO CONSTRUCTION EQUIPMENT, ETC. THE STRUCTURAL ENGINEER SHALL NOT BE RESPONSIBLE FOR THE CONTRACTORS’ METHODS, MEANS, TECHNIQUES, SEQUENCES FOR PRODUCTION OF CONSTRUCTION, OR THE SAFETY PRECAUTIONS AND THE PROTECTION OF VARIOUS PROPERTY INTERESTS AS TO THE SITE. IMPROVEMENT CONSTRUCTION IS THE RESPONSIBILITY OF THE GENERAL CONTRACTOR TO PROTECT THE MATERIALS AND THE IMPLEMENTATION OF ALL SCAFFOLDING, BRACING AND SHORING.

2. CONSTRUCTION MATERIALS SHALL BE SPELT OUT ON PLACED ON RAINED CONSTRUCTION. LOAD SHADING AND SPRINKLER PRESSURES (BASED ON 1.1 TIMES TYPICAL AREA)

3. WHERE REFERENCE IS MADE TO VARIOUS STANDARD SPECIFICATIONS, MATERIALS AND PRACTICES, SUCH REFERENCES ARE NOT TO BE CONSTRUED AS PART OF THE DOCUMENTS AND ARE SUBJECT TO BE REVISIONS WITHOUT NOTICE.

4. ESTABLISH AND VERIFY ALL DRAGERS AND INSERTS FOR ARCHITECTURAL, MACHINICAL, ELECTRICAL, AND PHYSICAL, AND APARTMENT TRADES, DRAWINGS AND SUBCONTRACTORS PROVISIONS BY THEIR SPECIFIC TRADE.

5. OPTIONS ARE FOR CONTRACTORS CONVENIENCE. IF AN OPTION IS CHOSEN THE CONTRACTOR SHALL PROVIDE ALL DETAILS NEEDED TO EXECUTE THE OPTION. ALL OPTIONS ARE TO BE CONSIDERED STANDARD UNLESS NOTED OTHERWISE.

6. NOTES AND DETAILS ON DRAWINGS SHALL TAKE PRIORITY OVER GENERAL, STRUCTURAL, NOTES AND DETAILS. WHERE NO DETAILS SHOWN, CONSTRUCTION SHALL CONFORM TO SIMILAR WORK ON THE PROJECT. FOR BEARING AREAS, WHERE NOTED, NO SPECIAL CONSTRUCTION SHALL BE REQUIRED.

7. THE CONTRACTOR SHALL BE RESPONSIBLE FOR整個 VIEWING CONDITIONS OF ALL DRAWINGS AND DETAILS. ALL DRAWINGS ARE TO BE CONSIDERED STANDARD UNLESS NOTED OTHERWISE.

8. WHERE DISCREPANCIES OCCUR BETWEEN PLANS, DETAILS, GENERAL STRUCTURAL NOTES AND INTERPRETATION OF THE CONTRACT DOCUMENTS, THE CONTRACTOR SHALL BE RESPONSIBLE TO RESOLVE ANY DISCREPANCY.

9. ANY ENGINEERING DESIGN, PROVIDED BY OTHERS AND SUBMITTED FOR REVIEW, SHALL BE THE RESPONSIBILITY OF THE ENGINEER REGISTERED IN THE STATE OF ALASKA.

FUNDATIONS:

1. FOUNDATION DESIGN IS BASED ON SOIL REPORT BY NORTHERN GEOLOGICAL. FOUNDATIONS SHALL CONFORM TO THE RECOMMENDATIONS OF THE SOIL REPORT. FOUNDATIONS SHALL BE BASED ON THE WITHOUT DETERMINATION OF SOIL TYPES, AND MEANS OF FOUNDATIONS SHALL BE BASED ON THE FOUNDATION SYSTEMS.

2. MINIMUM FOOTING BEARING DEPTH SHALL BE AS FOLLOWS:

- UNHEATED EXTERIOR FOOTINGS: 96" BELOW FINISHED GRADE
- HEATED PERIMETER FOOTINGS: ABOVE FINISHED FLOOR

3. PROVIDE POSITIVE DRAINAGE SLOPE, BOTH DURING AND AFTER CONSTRUCTION, FOR IMPROPER DRAINAGE MAY RESULT IN DAMAGES TO FOUNDATION SYSTEMS. ALL FOOTINGS SHALL BE MADE FROM BURLINGTON OIL BASED CONCRETE.

4. THE STRUCTURAL ENGINEER IS NOT RESPONSIBLE FOR ANY GEOTECHNICAL ASPECTS OF THE PROJECT. THE OWNER SHALL BEHOLD THE CONTRACTOR TO PERFORM NECESSARY TESTING AND QUALITY CONTROL INSPECTIONS TO ENSURE THAT THE RECOMMENDATIONS OF THE SOILS REPORT IS NOT BE VIOLATED.

5. ALL FOOTINGS SHALL BE APPROVED BY THE ARCHITECT.

6. SEE ARCHITECTURAL/CIVIL DRAWINGS FOR EXTERIOR SLABS AND SIDEWALLS.

CONCRETE:

1. ALL CONCRETE WORK SHALL BE CONFORM TO THE REQUIREMENTS OF ACI 301 AND ACI 211.3 CONCRETE SHALL BE FRESH MIXED AND ALLOWED AT PLACE. ALL CONCRETE MIXES SHALL BE DESIGNED TO PRODUCE THE PRODUCTION FACILITY IN ACCORDANCE WITH ACI 301.3 AND BE REVIEWED BY THE STRUCTURAL ENGINEER PRIOR TO CONSTRUCTION.

2. PROVIDE MORTAR ALL CONCRETE WHEN PLACED, EXCEPT THAT SLABS ON GRADE NEED BE VIBRATED ONLY AROUND UNDER FLOOR DUCTS, ETC. DO NOT DROP CONCRETE MORE THAN 3 FEET.

3. PROVIDE SLEEVES FOR ALL UTILITY OPENINGS. DO NOT CUT ANY REINFORCING AT PREVIOUS TO CONSTRUCTION.

4. PROVIDE BENT BARS TO MATCH HORIZONTAL REINFORCING AT CORNERS AND WALL CORNERS.

5. WHERE DISCREPANCIES OCCUR BETWEEN PLANS, DETAILS, GENERAL STRUCTURAL NOTES AND INTERPRETATION OF THE CONTRACT DOCUMENTS, THE CONTRACTOR SHALL BE RESPONSIBLE TO RESOLVE ANY DISCREPANCIES.

6. PROVIDE A QUALIFIED TESTING LABORATORY SHALL TEST ONE CYLINDER AT 7 DAYS AND TWO CYLINDERS AT 28 DAYS. TESTING OF COMPRESSIVE STRENGTH AND SLUMP SHALL CONFORM TO ASTM C31, C39 AND C143. PROVIDE A MINIMUM OF 3 CYLINDERS FOR EACH DAY’S PLACEMENT UNLESS NOTED OTHERWISE.

7. MECHANICALLY VIBRATE GROUT IN VERTICAL SPACES IMMEDIATELY AFTER PLACEMENT AND AGAIN ABOUT 5 MINUTES LATER. DO NOT INTERRUPT GROUTING FOR MORE THAN ONE HOUR.

8. MORTAR SHALL BE TYPE S, WITH AN AVERAGE COMPRESSIVE STRENGTH AT 28 DAYS OF 2,000 PSI.

9. DESIGN COMPRESSIVE STRENGTH OF MASONRY ASSEMBLIES, f’m = 2,000 PSI.

10. MECHANICALLY VIBRATE GROUT IN VERTICAL SPACES IMMEDIATELY AFTER PLACEMENT AND AGAIN ABOUT 5 MINUTES LATER. DO NOT INTERRUPT GROUTING FOR MORE THAN ONE HOUR.

11. PROVIDE SLEEVES FOR ALL UTILITY OPENINGS. DO NOT CUT ANY REINFORCING AT PREVIOUS TO CONSTRUCTION.

12. PROVIDE BENT BARS TO MATCH HORIZONTAL REINFORCING AT CORNERS AND WALL CORNERS.

13. PROVIDE A QUALIFIED TESTING LABORATORY SHALL TEST ONE CYLINDER AT 7 DAYS AND TWO CYLINDERS AT 28 DAYS. TESTING OF COMPRESSIVE STRENGTH AND SLUMP SHALL CONFORM TO ASTM C31, C39 AND C143. PROVIDE A MINIMUM OF 3 CYLINDERS FOR EACH DAY’S PLACEMENT UNLESS NOTED OTHERWISE.

14. PROVIDE SLEEVES FOR ALL UTILITY OPENINGS. DO NOT CUT ANY REINFORCING AT PREVIOUS TO CONSTRUCTION.

15. PROVIDE BENT BARS TO MATCH HORIZONTAL REINFORCING AT CORNERS AND WALL CORNERS.

16. PROVIDE A QUALIFIED TESTING LABORATORY SHALL TEST ONE CYLINDER AT 7 DAYS AND TWO CYLINDERS AT 28 DAYS. TESTING OF COMPRESSIVE STRENGTH AND SLUMP SHALL CONFORM TO ASTM C31, C39 AND C143. PROVIDE A MINIMUM OF 3 CYLINDERS FOR EACH DAY’S PLACEMENT UNLESS NOTED OTHERWISE.
REINFORCING STEEL:

1. ALL BARS IN AND LARGER THAN 3 IN. (76 MM) IN DIAMETER SHALL BE INSTALLED UNDER A DETAILING CERTIFICATE. ALL BARS IN AN AREA WHERE THE CONCRETE COVER SHALL BE LESS THAN 3 IN. (76 MM) SHALL BE COPYDRAWN (DATE DRAWN AND DRAWN BY) OR FIELD WELDED BY A WELDER HAVING THE NECESSARY QUALIFICATIONS AS DETERMINED BY THE ENGINEER. ALL FIELD WELDED CONNECTORS SHALL BE A COON LED TIN BOLT.

3. ALL BARS MOUNTED UP TO 3 IN. (76 MM) ABOVE THE BOTTOM EDGE OF THE CONCRETE SHALL BE ATTACHED TO THE CONCRETE WITH A CONCRETE HEAD OR A CONCRETE HEAD AND A BOLT.

4. ALL BARS MOUNTED ABOVE THE TOP EDGE OF THE CONCRETE SHALL BE ATTACHED TO THE CONCRETE WITH A CONCRETE HEAD OR A BOLT.

5. ALL BARS MOUNTED ABOVE THE BOTTOM EDGE OF THE CONCRETE SHALL BE ATTACHED TO THE CONCRETE WITH A CONCRETE HEAD OR A BOLT.

6. ALL BARS MOUNTED ABOVE THE TOP EDGE OF THE CONCRETE SHALL BE ATTACHED TO THE CONCRETE WITH A CONCRETE HEAD OR A BOLT.

7. ALL BARS MOUNTED UP TO 3 IN. (76 MM) ABOVE THE BOTTOM EDGE OF THE CONCRETE SHALL BE ATTACHED TO THE CONCRETE WITH A CONCRETE HEAD OR A BOLT.

8. ALL BARS MOUNTED ABOVE THE TOP EDGE OF THE CONCRETE SHALL BE ATTACHED TO THE CONCRETE WITH A CONCRETE HEAD OR A BOLT.

9. ALL BARS MOUNTED UP TO 3 IN. (76 MM) ABOVE THE BOTTOM EDGE OF THE CONCRETE SHALL BE ATTACHED TO THE CONCRETE WITH A CONCRETE HEAD OR A BOLT.

10. ALL BARS MOUNTED ABOVE THE TOP EDGE OF THE CONCRETE SHALL BE ATTACHED TO THE CONCRETE WITH A CONCRETE HEAD OR A BOLT.

11. ALL BARS MOUNTED UP TO 3 IN. (76 MM) ABOVE THE BOTTOM EDGE OF THE CONCRETE SHALL BE ATTACHED TO THE CONCRETE WITH A CONCRETE HEAD OR A BOLT.

12. ALL BARS MOUNTED ABOVE THE TOP EDGE OF THE CONCRETE SHALL BE ATTACHED TO THE CONCRETE WITH A CONCRETE HEAD OR A BOLT.

13. ALL BARS MOUNTED UP TO 3 IN. (76 MM) ABOVE THE BOTTOM EDGE OF THE CONCRETE SHALL BE ATTACHED TO THE CONCRETE WITH A CONCRETE HEAD OR A BOLT.

14. ALL BARS MOUNTED ABOVE THE TOP EDGE OF THE CONCRETE SHALL BE ATTACHED TO THE CONCRETE WITH A CONCRETE HEAD OR A BOLT.

15. ALL BARS MOUNTED UP TO 3 IN. (76 MM) ABOVE THE BOTTOM EDGE OF THE CONCRETE SHALL BE ATTACHED TO THE CONCRETE WITH A CONCRETE HEAD OR A BOLT.

16. ALL BARS MOUNTED ABOVE THE TOP EDGE OF THE CONCRETE SHALL BE ATTACHED TO THE CONCRETE WITH A CONCRETE HEAD OR A BOLT.

17. ALL BARS MOUNTED UP TO 3 IN. (76 MM) ABOVE THE BOTTOM EDGE OF THE CONCRETE SHALL BE ATTACHED TO THE CONCRETE WITH A CONCRETE HEAD OR A BOLT.

18. ALL BARS MOUNTED ABOVE THE TOP EDGE OF THE CONCRETE SHALL BE ATTACHED TO THE CONCRETE WITH A CONCRETE HEAD OR A BOLT.

19. ALL BARS MOUNTED UP TO 3 IN. (76 MM) ABOVE THE BOTTOM EDGE OF THE CONCRETE SHALL BE ATTACHED TO THE CONCRETE WITH A CONCRETE HEAD OR A BOLT.

20. ALL BARS MOUNTED ABOVE THE TOP EDGE OF THE CONCRETE SHALL BE ATTACHED TO THE CONCRETE WITH A CONCRETE HEAD OR A BOLT.

21. ALL BARS MOUNTED UP TO 3 IN. (76 MM) ABOVE THE BOTTOM EDGE OF THE CONCRETE SHALL BE ATTACHED TO THE CONCRETE WITH A CONCRETE HEAD OR A BOLT.

22. ALL BARS MOUNTED ABOVE THE TOP EDGE OF THE CONCRETE SHALL BE ATTACHED TO THE CONCRETE WITH A CONCRETE HEAD OR A BOLT.

23. ALL BARS MOUNTED UP TO 3 IN. (76 MM) ABOVE THE BOTTOM EDGE OF THE CONCRETE SHALL BE ATTACHED TO THE CONCRETE WITH A CONCRETE HEAD OR A BOLT.

24. ALL BARS MOUNTED ABOVE THE TOP EDGE OF THE CONCRETE SHALL BE ATTACHED TO THE CONCRETE WITH A CONCRETE HEAD OR A BOLT.

25. ALL BARS MOUNTED UP TO 3 IN. (76 MM) ABOVE THE BOTTOM EDGE OF THE CONCRETE SHALL BE ATTACHED TO THE CONCRETE WITH A CONCRETE HEAD OR A BOLT.

26. ALL BARS MOUNTED ABOVE THE TOP EDGE OF THE CONCRETE SHALL BE ATTACHED TO THE CONCRETE WITH A CONCRETE HEAD OR A BOLT.

27. ALL BARS MOUNTED UP TO 3 IN. (76 MM) ABOVE THE BOTTOM EDGE OF THE CONCRETE SHALL BE ATTACHED TO THE CONCRETE WITH A CONCRETE HEAD OR A BOLT.

28. ALL BARS MOUNTED ABOVE THE TOP EDGE OF THE CONCRETE SHALL BE ATTACHED TO THE CONCRETE WITH A CONCRETE HEAD OR A BOLT.

29. ALL BARS MOUNTED UP TO 3 IN. (76 MM) ABOVE THE BOTTOM EDGE OF THE CONCRETE SHALL BE ATTACHED TO THE CONCRETE WITH A CONCRETE HEAD OR A BOLT.

30. ALL BARS MOUNTED ABOVE THE TOP EDGE OF THE CONCRETE SHALL BE ATTACHED TO THE CONCRETE WITH A CONCRETE HEAD OR A BOLT.

31. ALL BARS MOUNTED UP TO 3 IN. (76 MM) ABOVE THE BOTTOM EDGE OF THE CONCRETE SHALL BE ATTACHED TO THE CONCRETE WITH A CONCRETE HEAD OR A BOLT.

32. ALL BARS MOUNTED ABOVE THE TOP EDGE OF THE CONCRETE SHALL BE ATTACHED TO THE CONCRETE WITH A CONCRETE HEAD OR A BOLT.

33. ALL BARS MOUNTED UP TO 3 IN. (76 MM) ABOVE THE BOTTOM EDGE OF THE CONCRETE SHALL BE ATTACHED TO THE CONCRETE WITH A CONCRETE HEAD OR A BOLT.

34. ALL BARS MOUNTED ABOVE THE TOP EDGE OF THE CONCRETE SHALL BE ATTACHED TO THE CONCRETE WITH A CONCRETE HEAD OR A BOLT.

35. ALL BARS MOUNTED UP TO 3 IN. (76 MM) ABOVE THE BOTTOM EDGE OF THE CONCRETE SHALL BE ATTACHED TO THE CONCRETE WITH A CONCRETE HEAD OR A BOLT.

36. ALL BARS MOUNTED ABOVE THE TOP EDGE OF THE CONCRETE SHALL BE ATTACHED TO THE CONCRETE WITH A CONCRETE HEAD OR A BOLT.

37. ALL BARS MOUNTED UP TO 3 IN. (76 MM) ABOVE THE BOTTOM EDGE OF THE CONCRETE SHALL BE ATTACHED TO THE CONCRETE WITH A CONCRETE HEAD OR A BOLT.

38. ALL BARS MOUNTED ABOVE THE TOP EDGE OF THE CONCRETE SHALL BE ATTACHED TO THE CONCRETE WITH A CONCRETE HEAD OR A BOLT.

39. ALL BARS MOUNTED UP TO 3 IN. (76 MM) ABOVE THE BOTTOM EDGE OF THE CONCRETE SHALL BE ATTACHED TO THE CONCRETE WITH A CONCRETE HEAD OR A BOLT.

40. ALL BARS MOUNTED ABOVE THE TOP EDGE OF THE CONCRETE SHALL BE ATTACHED TO THE CONCRETE WITH A CONCRETE HEAD OR A BOLT.
GENERAL STRUCTURAL NOTES (CONTINUED)

A. THE SPECIAL INSPECTOR SHALL OBSERVE THE WORK ASSIGNED FOR CONFORMANCE TO THE APPROVED CONSTRUCTION DOCUMENTS.

B. THE SPECIAL INSPECTOR SHALL FURNISH INSPECTION REPORTS TO THE BUILDING OFFICIAL AND TO THE ENGINEER OR ARCHITECT OF RECORD. REPORTS SHALL INDICATE THAT WORK INSPECTED HAS BEEN PERFORMED IN CONFORMANCE TO THE APPROVED CONSTRUCTION DOCUMENTS. DISCREPANCIES SHALL BE BROUGHT TO THE IMMEDIATE ATTENTION OF THE CONTRACTOR FOR CORRECTION, THEN, IF DEEMED NECESSARY, TO THE ENGINEER OR ARCHITECT OF RECORD AND THE BUILDING OFFICIAL.

2. CONCRETE

Reinforcing Steel and Posttensioning Tendon Placement

- Inspect to ensure proper placement of reinforcing steel and posttensioning tendons.

Welding of Reinforcing Steel

- Inspect to ensure proper welding of reinforcing steel.

Placement of Cast-In-Place Anchor Bolts

- Inspect to ensure proper placement of anchor bolts.

Verify Use of Required Mix Designs

- Inspect to ensure proper verification of mixes.

Concrete Placement

- Inspect to ensure proper placement of concrete.

Shotcrete Placement

- Inspect to ensure proper placement of shotcrete.

Concrete Placement at Composite Slabs

- Inspect to ensure proper placement of concrete at composite slabs.

Concrete/Hybrid/Curing

- Inspect to ensure proper curing of concrete.

Verification of Austenitic Concrete Strength prior to Stripping of Tensioned Concrete

- Inspect to ensure proper verification of concrete strength.

Stresses in Tensioned Concrete

- Inspect to ensure proper stresses in tensioned concrete.

Direction of Prestress Members

- Inspect to ensure proper direction of prestress members.

Verification of Austenitic Concrete Prior to Stripping of Forming and Shore from Elevated Beams and Slabs

- Inspect to ensure proper verification of concrete strength.

Verification of Formwork

- Inspect to ensure proper verification of formwork.

3. MASONRY

Placement of Reinforcement and Anchors Prior to Grouting

- Inspect to ensure proper placement of reinforcement and anchors.

4. POST-INSTALLED ANCHORS

Installation in Handfiled Concrete and Cast-In-Place Masonry

- Inspect to ensure proper installation in handfiled concrete and cast-in-place masonry.

FABRICATORS

Fabricated Systems and Elements

- Inspect fabricated systems and elements to ensure proper installation and compliance.

TABLE 1: REQUIRED GEOTECHNICAL SPECIAL INSPECTIONS

<table>
<thead>
<tr>
<th>System or Material</th>
<th>B.C. Code Reference</th>
<th>Code or Standard Reference</th>
<th>Frequency</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Soils</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1705.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>BY THE GEOTECHNICAL ENGINEER</td>
</tr>
</tbody>
</table>

Verification of Footing Bearing Capacity and Grout Subgrade Preparation for Piles

- Inspect to ensure proper verification of bearing capacity and grout subgrade.

Fill Material Verification

- Inspect to ensure proper verification of fill material.

Fill Placement & Compaction

- Inspect to ensure proper fill placement and compaction.

Lift Thickness

- Inspect to ensure proper lift thickness.

TABLE 2: REQUIRED STRUCTURAL SPECIAL INSPECTIONS

<table>
<thead>
<tr>
<th>System or Material</th>
<th>B.C. Code Reference</th>
<th>Code or Standard Reference</th>
<th>Frequency</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Fabricators</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1704.2.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1704.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SPECIAL INSPECTIONS APPLY TO REQUIRED PRODUCT NAME, TYPE, AND DIMENSIONS. COMPLIANCE WITH CODE REQUIREMENTS, CLEANLINESS OF THE HOLE AND ANCHOR, ADHESIVE EXPIRATION DATE, ANCHOR INSTALLATION, ANCHOR EMBEDMENT, AND TIGHTENING TORQUE. FREQUENCY OF INSPECTIONS PER APPLICABLE PRODUCT TEST REPORT.</td>
</tr>
</tbody>
</table>

PERMIT DOCUMENTS
5. STRUCTURAL WOOD FRAMING

Inspection after Welding

<table>
<thead>
<tr>
<th>Inspection Item</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Welds cleaned</td>
<td>X</td>
</tr>
<tr>
<td>Welds meet visual acceptance criteria</td>
<td>X</td>
</tr>
<tr>
<td>Crack prevention</td>
<td>X</td>
</tr>
<tr>
<td>Welds/steel fusion</td>
<td>X</td>
</tr>
<tr>
<td>Crater cross section</td>
<td>X</td>
</tr>
<tr>
<td>Weld profiles</td>
<td>AISC 360 N5-4-1</td>
</tr>
<tr>
<td>Weld size</td>
<td>X</td>
</tr>
<tr>
<td>Undercut</td>
<td>X</td>
</tr>
<tr>
<td>Porosity</td>
<td>X</td>
</tr>
<tr>
<td>Arc strikes</td>
<td>X</td>
</tr>
<tr>
<td>K-area</td>
<td>X</td>
</tr>
<tr>
<td>Backing/removed and weld tabs removed (if required)</td>
<td>X</td>
</tr>
<tr>
<td>Repair activities</td>
<td>X</td>
</tr>
</tbody>
</table>

Inspection prior to Welding

<table>
<thead>
<tr>
<th>Inspection Item</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Welding procedure specifications available</td>
<td>1705.2</td>
</tr>
<tr>
<td>Manufacturer's certifications for welding consumables available</td>
<td>1705.2</td>
</tr>
<tr>
<td>Material identification (if required)</td>
<td>X</td>
</tr>
<tr>
<td>Welder identification system</td>
<td>X</td>
</tr>
<tr>
<td>Fit-up of groove welds (including joint geometry)</td>
<td>X</td>
</tr>
<tr>
<td>Joint preparation</td>
<td>X</td>
</tr>
<tr>
<td>Cleanliness (condition of steel surface)</td>
<td>X</td>
</tr>
<tr>
<td>Tack weld quality and location</td>
<td>X</td>
</tr>
<tr>
<td>Backing type and fit (if applicable)</td>
<td>X</td>
</tr>
<tr>
<td>Configuration and finish of access holes</td>
<td>X</td>
</tr>
<tr>
<td>Fit-up of fillet welds</td>
<td>X</td>
</tr>
<tr>
<td>Dimensions (alignment, gaps at root)</td>
<td>X</td>
</tr>
<tr>
<td>Check welding equipment</td>
<td>X</td>
</tr>
</tbody>
</table>

Remarks
- Refer to inspection of fabricator requirements.
TABLE 2: REQUIRED STRUCTURAL SPECIAL INSPECTIONS (CONTINUED)

6. STRUCTURAL STEEL (CONTINUED)

INSPECTION PRIOR TO BOLTING

<table>
<thead>
<tr>
<th>Item</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>FASTENERS MARKED IN ACCORDANCE WITH ASTM REQUIREMENTS</td>
<td>X</td>
</tr>
<tr>
<td>PROPER FASTENERS SELECTED FOR THE JOINT DETAIL (GRADE, TYPE, BOLT LENGTH IF THREADS ARE TO BE EXCLUDED FROM SHEAR PLANE)</td>
<td>X</td>
</tr>
<tr>
<td>PROPER BOLTING PROCEDURE SELECTED FOR JOINT DETAIL</td>
<td>X</td>
</tr>
<tr>
<td>CONNECTING ELEMENTS, INCLUDING THE APPROPRIATE FAYING SURFACE CONDITION AND HOLE PREPARATION, IF SPECIFIED, MEET APPLICABLE REQUIREMENTS</td>
<td>X</td>
</tr>
<tr>
<td>PRE-INSTALLATION VERIFICATION TESTING BY INSTALLATION PERSONNEL OBSERVED AND DOCUMENTED FOR FASTENER ASSEMBLIES AND METHODS USED</td>
<td>X</td>
</tr>
</tbody>
</table>

INSPECTION DURING BOLTING

<table>
<thead>
<tr>
<th>Item</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>FASTENER ASSEMBLY OR EMBEDDED EMBEDMENTS PLACED IN ALL HOLES AND HOLE PREPARATION ARE POSITIONED AS REQUIRED</td>
<td>X</td>
</tr>
<tr>
<td>FASTENER COMPONENTS NOT TURNED BY THE WRENCH PRIOR TO THE PRE-TENSIONING OPERATION</td>
<td>X</td>
</tr>
<tr>
<td>FASTENERS ARE PRE-PERFORATED IN ACCORDANCE WITH THE RCSC SPECIFICATION, PREPARED AS NEEDED AND THE PROPER RISPS/FINAL CLEANING TOWARDS THE FREE EDGES</td>
<td>X</td>
</tr>
</tbody>
</table>

INSPECTION AFTER BOLTING

<table>
<thead>
<tr>
<th>Item</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>DOCUMENT ACCEPTANCE OR REJECTION OF BOLTED CONNECTION</td>
<td>X</td>
</tr>
<tr>
<td>VERIFICATION OF FRAME JOINT DETAILS INCLUDING MEMBER AND CONNECTIONS, BOLTED HOLE AND HOLE PREPARATION, AND STEELWORK</td>
<td>X</td>
</tr>
<tr>
<td>EACH PASSIVE METAL DEFORMATION SUPPORTING THE CONSTRUCTION DOCUMENTS</td>
<td>X</td>
</tr>
</tbody>
</table>

USE OF QUALIFIED WELDERS

<table>
<thead>
<tr>
<th>Item</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONTINUOUS HANDLING OF WELDING CONSUMABLES</td>
<td>X</td>
</tr>
<tr>
<td>PACKAGING</td>
<td>X</td>
</tr>
<tr>
<td>EXPOSURE CONTROL</td>
<td>X</td>
</tr>
<tr>
<td>NO WELDING OVER CRACKED TACK WELDS</td>
<td>X</td>
</tr>
<tr>
<td>ENVIRONMENTAL CONDITIONS</td>
<td>X</td>
</tr>
<tr>
<td>WIND SPEED WITHIN LIMITS</td>
<td>X</td>
</tr>
<tr>
<td>PRECIPITATION AND TEMPERATURE</td>
<td>X</td>
</tr>
<tr>
<td>GIPS FOLLOWING</td>
<td>X</td>
</tr>
<tr>
<td>SETTINGS ON WELDING EQUIPMENT</td>
<td>X</td>
</tr>
<tr>
<td>TRAVEL SPEED</td>
<td>X</td>
</tr>
<tr>
<td>SELECTED WELDING MATERIALS</td>
<td>X</td>
</tr>
<tr>
<td>SHIELDING GAS TYPE/FLOW RATE</td>
<td>X</td>
</tr>
<tr>
<td>PREHEAT APPLIED</td>
<td>X</td>
</tr>
<tr>
<td>INTERPASS TEMPERATURE MAINTAINED (MIN./MAX.)</td>
<td>X</td>
</tr>
<tr>
<td>PROCESS POSITIONS (F, V, H, OH)</td>
<td>X</td>
</tr>
<tr>
<td>WELDING TECHNIQUES</td>
<td>X</td>
</tr>
<tr>
<td>INTERPASSES AND FINAL CLEANING</td>
<td>X</td>
</tr>
<tr>
<td>EACH PASSIVE METAL DEFORMATION SUPPORTING THE CONSTRUCTION DOCUMENTS</td>
<td>X</td>
</tr>
<tr>
<td>EACH PASSIVE METAL DEFORMATION SUPPORTING THE CONSTRUCTION DOCUMENTS</td>
<td>X</td>
</tr>
<tr>
<td>TABLE 3: REQUIRED TESTING FOR SPECIAL INSPECTIONS</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td></td>
</tr>
<tr>
<td>SYSTEM OR MATERIAL</td>
<td></td>
</tr>
<tr>
<td>INSPECTION</td>
<td></td>
</tr>
<tr>
<td>BIC CODE REFERENCE</td>
<td></td>
</tr>
<tr>
<td>CODE OR STANDARD REFERENCE</td>
<td></td>
</tr>
<tr>
<td>FREQUENCY</td>
<td></td>
</tr>
<tr>
<td>REMARKS</td>
<td></td>
</tr>
</tbody>
</table>

1. GEOTECHNICAL
- **Fill, In-Place Density or Prepared Subgrade Density**
 - Frequency: Varies minimum per BC Appendix J10.9
 - Remarks: By the geotechnical engineer
- **Material Verification**
 - Frequency: Varies
 - Remarks: Classification and testing of controlled fill materials
 - Remarks: By the geotechnical engineer
- **Tension Anchors**
 - Frequency: Performance test first 10 anchors to 0.80 of DL and proof load remaining anchors to 0.85 of DL
 - Remarks: By the geotechnical engineer

2. CONCRETE
- **Concrete Strength**
 - Frequency: AS 513
 - Remarks: Fabricate specimens at time fresh concrete is placed
 - Remarks: BY GEOTECHNICAL REPORT
- **Concrete slump**
 - Frequency: AS 143
- **Concrete air content**
 - Frequency: AS 231
- **Concrete temperature**
 - Frequency: AS 1584

3. MASONRY
- **Unit strength method**
 - Frequency: AS 505.2.1
 - Remarks: Prior to construction level 2QA and during construction level 3QA (or 1QA)

4. STRUCTURAL STEEL
- **Magnetic particle (MT) and Ultrasonic (UT) testing of welds**
 - Frequency: AS 110.3.2.1
 - Remarks: See AS 505.2.1 for QA on groove welds, access holes, and fixed welds
- **Pre-construction testing of welding studs**
 - Frequency: AS 505.1.7.1
 - Remarks: See AS 505.2.1 for QA on groove welds, access holes, and fixed welds
- **Pre-installation testing of welding studs welded through decking**
 - Frequency: AS 505.1.7.1
 - Remarks: See AS 505.2.1 for QA on groove welds, access holes, and fixed welds
- **Pre-installation verification of pretensioned high strength bolts**
 - Frequency: AS 505.2
 - Remarks: See AS 505.2.1 for QA on groove welds, access holes, and fixed welds
 - Remarks: Each combination of diameter, length, grade, and lot to be used in the work

REMARKS

- IBC Code or Standard Frequency
- Only required as specifically indicated and/or if masonry does not meet the requirements for application of the unit strength method.
TYPICAL AT BUILT-UP STUD POSTS,
04/01/20

DOUBLE SILL PLATE WHERE SPACE TO MATCH STUDDING ABOVE.

NOTES:
SOLID BLOCKING AT SHEATHING PANEL JOINTS.
BUILT-UP STUD POST TO MATCH FLOOR RIM BOARD.

10. FASTENING SHEATHING. IT MAY OCCUR ON 5.

LOCATION WOOD STUD WALL.

6. CONTINUOUS TOP PLATE SPLICE PER 17.
11. DOUBLE PLATE SPLICE, MINIMUM 1/4" THICK, DRILLING SECURE.

5. CENTER STUDS TO MATCH COLUMN AS OCCURS.

7. FRAMING NAILS IN SILL PLATE.

13. (1) 16d COMMON (3 1/2"x0.135") AT 12" O.C.
14. (3) 8d COMMON (2 1/2"x0.131") TOENAIL CONT. HEADER
TO STUD

8d (2 1/2"x0.131") AT 6" O.C.
3"x0.131" NAILS AT 8" O.C.
(4) 16d (3 1/2"x0.135") AT 12" O.C.
(2) (1)

217076-X-DETAILS-11 217076-X-DETAILS-13

1. SIMPLE DESIGN, LL. #AECL1394
SHEARWALL SHEATHING.
OR GIRDER
WOOD COLUMN AS OCCURS.

HOLDOWN ANCHOR. ANCHOR BOLTS IN SILL PLATE. HOLDOWN.
11. AT EVERY CORNER STUD, EVERY FULL HEIGHT
17. LOCATION EDGE ATTACHMENT.
3"x0.131" NAILS TO TOP PLATE
HEAVERS WHERE STRAPPING ATTACHED TO THEM FROM ABOVE.
3"x0.131" NAILS AT 8" O.C.
(3) 3"x0.131" NAILS TO
HEADERS WHERE STRAPPING ATTACHED TO THEM FROM ABOVE.
(2) 3"x0.131" NAILS
(4) 3"x0.131"
(1)
(12) 16d NAILS EACH SIDE OF SPLICE U.N.O.
(2) 16d COMMON (3 1/2"x0.162")
(4) 8d COMMON (2 1/2"x0.131")
(3) 8d COMMON (2 1/2"
(4)
8d (2 1/2"x0.131") AT 6" O.C.
3"x0.131" NAILS AT 8" O.C.
(3) 3"x0.131"
(5) 217076-X-DETAILS-12 217076-X-DETAILS-18 217076-X-DETAILS-16

SIMPSON TSP STUD PLATE TIE AT EVERY SPARK DESIGN, LLC
STUD PLATE TIE AT EVERY SIMPSON (2) WOOD I-JOIST.

SIDE MOUNTING DETAIL ONLY APPLIES AT
HOLDUP (H) SCHEDULE

<table>
<thead>
<tr>
<th>MARK</th>
<th>HOUDLE</th>
<th>CONNECTION TO STUDS</th>
<th>CONNECTION AT FOUNDATION</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>H1</td>
<td>SIMPSON</td>
<td>2x4 TOTAL AT 2x6</td>
<td>--</td>
<td>STRAP LENGTH = 32" + CLEAR SPAN</td>
</tr>
<tr>
<td>H2</td>
<td>SIMPSON</td>
<td>2x4 TOTAL AT EACH 2x6</td>
<td>--</td>
<td>STRAP LENGTH = 32" + CLEAR SPAN</td>
</tr>
<tr>
<td>H3</td>
<td>SIMPSON</td>
<td>2x4 TOTAL AT 2x6</td>
<td>--</td>
<td>STRAP LENGTH = 32" + CLEAR SPAN</td>
</tr>
<tr>
<td>H4</td>
<td>SIMPSON</td>
<td>2x4 TOTAL AT 2x6</td>
<td>--</td>
<td>STRAP LENGTH = 32" + CLEAR SPAN</td>
</tr>
</tbody>
</table>

FOOTING (F) SCHEDULE

<table>
<thead>
<tr>
<th>MARK</th>
<th>HEIGHT</th>
<th>WIDTH</th>
<th>LENGTH</th>
<th>FOOTING REINFORCING</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>F1</td>
<td>10"</td>
<td>1'-4"</td>
<td>4"</td>
<td>CONE</td>
<td>--</td>
</tr>
<tr>
<td>F2</td>
<td>12"</td>
<td>3'-4"</td>
<td>6"</td>
<td>CONE</td>
<td>--</td>
</tr>
<tr>
<td>F3</td>
<td>12"</td>
<td>4'-8"</td>
<td>6"</td>
<td>CONE</td>
<td>--</td>
</tr>
<tr>
<td>F4</td>
<td>12"</td>
<td>1'-4"</td>
<td>4"</td>
<td>CONE</td>
<td>--</td>
</tr>
</tbody>
</table>

CONCRETE PEDESTAL (CP) SCHEDULE

<table>
<thead>
<tr>
<th>MARK</th>
<th>DESCRIPTION</th>
<th>DATE</th>
<th>SHEET NO.</th>
<th>SHEET NAME</th>
<th>DRAWN</th>
<th>REVIEWED</th>
<th>PERMIT DOCUMENTS</th>
<th>JOB NO.</th>
<th>DATE</th>
<th>DRAWN</th>
<th>REVIEWED</th>
</tr>
</thead>
<tbody>
<tr>
<td>CP1</td>
<td>3/4" x 12" x 1'-0" BASE PLATE</td>
<td>04/01/20</td>
<td>SCHEDULES</td>
<td>SCHEDULES</td>
<td>ELON</td>
<td>REB</td>
<td>ZDS</td>
<td>217076</td>
<td>01.10.20</td>
<td>01.10.20</td>
<td>01.10.20</td>
</tr>
</tbody>
</table>
Remarks

1. See typical details for additional information.
2. Where sheathing is required on both faces of wall and nail spacing is less than 6" O.C. each face, panel joints shall be offset to fall on different framing members.
3. Where 8d nails are spaced at 2" O.C. or where 10d nails are spaced at 3" O.C. or less, framing member shall be 3x or thicker and nails shall be staggered.
4. Maximum stud spacing is 16" O.C.
5. Orient panels horizontally or vertically. All panel edges shall be backed with 2x framing (3x as required). Block between studs at horizontal panel edges, U.N.O.
6. Edge attachment spacing applies to all studs at panel edges, top and bottom plates, and blocking at panel edges. Locate nails 3/8" minimum from edges.
7. Nails shall be common or galvanized (hot dipped or tumbled) box nails.
8. Install 3x or (2) 2x at all sheathing panel joints. Fasten (2) 10d nails at 4" O.C., 2x4 flat blocking is permitted.
9. Install (2) 2x at all sheathing panel joints.
10. Strap length = rough opening width + 2x (jamb stud width) + 2x (end length).
11. Straps may be installed on inside or outside face of wall. On top of sheathing or underneath sheathing.

Shear Wall (SW) Schedule (Wood Framing)

<table>
<thead>
<tr>
<th>SHEATHING MATERIAL AND ATTACHMENT</th>
<th>SHEATHING THICKNESS</th>
<th>NUMBER OF FACES</th>
<th>EDGE ATTACHMENT SILL PLATE</th>
<th>ATTACHMENT AT FOUNDATION</th>
<th>ATTACHMENT AT FRAMING</th>
<th>STRAPPING AT OPENINGS (S) O.C.</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>W.S.P.</td>
<td>7/16"</td>
<td>1</td>
<td>8d NAILS AT 6" O.C.</td>
<td>5/8" DIA ANCHORS AT 48" O.C.</td>
<td>16d NAILS AT 5" O.C.</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>W.S.P.</td>
<td>7/16"</td>
<td>1</td>
<td>8d NAILS AT 6" O.C.</td>
<td>5/8" DIA ANCHORS AT 48" O.C.</td>
<td>16d NAILS AT 5" O.C.</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>W.S.P.</td>
<td>7/16"</td>
<td>1</td>
<td>8d NAILS AT 6" O.C.</td>
<td>5/8" DIA ANCHORS AT 48" O.C.</td>
<td>16d NAILS AT 5" O.C.</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>W.S.P.</td>
<td>7/16"</td>
<td>1</td>
<td>8d NAILS AT 6" O.C.</td>
<td>5/8" DIA ANCHORS AT 48" O.C.</td>
<td>16d NAILS AT 5" O.C.</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>W.S.P.</td>
<td>1/4"</td>
<td>1</td>
<td>8d NAILS AT 6" O.C.</td>
<td>5/8" DIA ANCHORS AT 48" O.C.</td>
<td>16d NAILS AT 5" O.C.</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>

Keyed Notes

A. Contractor's option to use alternate sill plate shown in parentheses (). Use alternate anchor bolt spacing shown in parentheses ().

PERMIT DOCUMENTS

SHEAR WALL (SW) SCHEDULE (WOOD FRAMING)

C.H.A. WELDING AUTHORITY

WEST 32ND AVENUE

ANCHORAGE, ALASKA

S1.10

REVISION SCHEDULE

DESCRIPTION DATE

04/01/20

04/01/20
1. 4" CONCRETE SLAB ON GRADE ON PREPARED SUBGRADE PER SOILS REPORT. REINFORCE WITH 6x6 W1.4-W1.4 W.W.F. AT MIDDLE DEPTH. SEE G.S.N. AND TYPICAL DETAILS FOR CONTROL JOINT INFORMATION.

2. WOOD STAIRS PER G.S.N.

3. 3/4" GYPCRETE TOPPING ON FLOOR SHEATHING PER G.S.N.

4. ROOF SHEATHING PER G.S.N.

5. WALL MOUNTED SOLAR FRAMING PER ARCHITECTURAL DRAWINGS. RACKING FRAMING AND ATTACHMENT TO STRUCTURE IS A DEFERRED DESIGN. PROVIDE ADDITIONAL WALL STUDDING AND/OR BLOCKING AS REQUIRED.

6. STEP FOOTING PER TYPICAL DETAIL.

7. FIRE RETARDANT TREATED ROOF SHEATHING PER G.S.N. ATTACH TO FRAMING WITH #10 SCREWS AT 6" O.C. ALONG PANEL EDGES AND 12" O.C. IN PANEL FIELDS.

8. TYPICAL AT WOOD GLUED-LAMINATED COLUMNS: USE D.F. #1 SILL PLATES.

9. TYPICAL: CONCRETE CLOSURE POUR PER G.S.N. AND TYPICAL DETAIL.

10. TYPICAL: CONCRETE CONTROL JOINT PER G.S.N. AND TYPICAL DETAIL.

11. AT HATCHING BLOCK DIAPHRAGM WITH 2x BLOCKING. USE 10d NAILS AT 6" O.C. EDGE ATTACHMENT.

12. TYPICAL: CONTINUOUS 5 1/8" x 12" GLB RIM BOARD. FRAME BETWEEN ADJACENT WALLS OR STAIR LANDING. AT CORNERS, FASTEN BEAMS TOGETHER WITH (6) FASTEN MASTER LEDGER LOCK LH0615 SCREWS AND (2) SIMPSON A35 CLIPS WITH (12) #6 x 1/2" SPAX FASTENERS. FASTEN TO WOOD STUD WALLS WITH (2) SIMPSON A35 CLIPS.

13. CONCRETE RAMP ON GRADE.

14. CONCRETE STAIRS ON GRADE.

15. ROOF TOP MECHANICAL UNIT. WEIGHT = 3,400 LB. LOCATION PER ARCHITECTURAL/MECHANICAL DRAWINGS.

16. ROOF HATCH OPENING PER ARCHITECTURAL.

17. TYPICAL AT ALCOVES, CONTINUOUS 3 1/8 x 12 GLB RIMBOARD. SEE DETAIL 210.

18. FASTEN BEAM TO BEAM WITH SIMPSON HHGU TYPE BEAM HANGER.

19. DOUBLE 2X6 JOIST FRAMING BENEATH ENTIRE MECHANICAL UNIT.

20. AT (2) SPAN BEAM CONDITION USE SIMPSON CCO TYPE COLUMN CAP.

21. INSTALL DOUBLE JOIST AT PARAPET AND SUPPORT PARAPET WITH 2X6 KISERES AT 32" O.C. SHEATH WITH ROOF SHEATHING.

22. TYPICAL: SIMPSON CS 14 1 3/4" x 7 1/4" LVL COLUMN AT ELEVATOR RAIL. ATTACH COLUMN PILES WITH (3) SIMPSON A35 CLIPS AT EACH FLOOR.

23. CENTERLINE OF SLIDING COLUMNS OCCURS AT CANOPY TOP OF STEEL ELEVATION.

24. CENTERLINE OF SLIDING COLUMNS OCCURS AT CANOPY TOP OF STEEL ELEVATION.

25. TYPICAL: MECHANICAL DUCTS. COORDINATE WITH ARCHITECTURAL DRAWINGS. IF OPENING IS WIDER THAN STUD BAY, FRAME PER WO1., U.N.O.

26. CONCRETE HOUSEKEEPING PAD PER TYPICAL DETAIL. COORDINATE WITH ARCHITECTURAL DRAWINGS.

27. TYPICAL: MECHANICAL EQUIPMENT. COORDINATE WITH MECHANICAL DRAWINGS.

28. WALL MOUNTED ELECTRICAL EQUIPMENT. PROVIDE ADDITIONAL WALL STUDDING AND/OR BLOCKING AS REQUIRED. ATTACHMENT TO WALL FRAMING IS A DEFERRED DESIGN.

29. TYPICAL PATCH WALL: STAGGERED 2X4 WOOD STUDS AT 6" O.C. ON 2X6 PLATE.
LEVEL 1 - FOUNDATION PLAN

SCALE: 1/8" = 1'
LEVEL 3 - FLOOR FRAMING PLAN

SCALE: 3/16" = 1'-0"

NOTES:
1. FLOOR JOISTS ARE 11 7/8" BCI 6000 - 1.8 D.F. AT 16" O.C. U.N.O.
2. FRAME ALL SHIELD OPENINGS, INCLUDING ELEVATOR, WITH 3 1/8" GLB RIM/BEAM MEMBERS FOR FIRE RESISTANCE.

SEE SHEET S2.00 FOR PLAN KEYNOTES
COOK INLET HOUSING AUTHORITY
WEST 32ND AVENUE
ANCHORAGE, ALASKA

W4X10 (LOW)
2x8 AT 16" O.C.

PERMIT DOCUMENTS

SCALE: 3/16" = 1'

HIGH ROOF FRAMING PLAN

REVISION SCHEDULE

DESCRIPTION DATE

04/01/20

CERTIFICATE OF AUTHORIZATION NO:
SPARK DESIGN, LLC #AECL1394

SOLAR PANEL FRAMING PLAN

01.10.2020
217076

SEE SHEET S2.00 FOR PLAN KEYNOTES
NOTES:

1. WOOD STUD WALL AT ELEVATOR PIT
 - Reinforce with #5 verticals
 - Wood stud wall beyond
 - Shaft liner per architectural drawings.

2. At 32" O.C., and #5 horizontal at 24" O.C., centered.

3. Continuous treated wood sill plate with post-installed anchors.

4. Reinforce with #5 verticals at 32" O.C., and #5 horizontal at 24" O.C., centered.

5. Concrete slab on grade.

6. Footing.

7. Elevator drawings.

8. Verify pit depth with elevator drawings.

9. #5 hooked footing dowel at 32" O.C.

10. Heated footing depth per G.S.N.

11. Slope to foundation wall as 8" cast-in-place concrete with #5 bars at 18" O.C., each way, centered.

12. Contractor's option to construct foundation wall as 8" cast-in-place concrete with #5 bars at 18" O.C., each way, centered.
NOTES:
WOOD BEAM.
SIMPSON MGU TYPE BEAM.

STEEL COLUMN.
NOTES:
1/2" THICK STEEL COLUMN.

1. 1/4" STEEL PLATES.
2. 3/4" DIA. X 3" LAG BOLTS.
3. "BENT PLATE.
4. 1/4" CAP PLATE.
5. FLAT 2x BLOCKING BETWEEN JOIST BLOCKING.
6. LONGER WELD IS ON BENT EDGE OF CLIP.
7. 1/4" CAP PLATE FULLY WELDED.
8. (6) #10 SCREWS.
9. WOOD STUD WALL.
10. EDGE ATTACHMENT, U.N.O.

SHEATHING.
1. LEDGER ATTACHMENT PER SCHEDULE.
2. WOOD STUD WALL.
3. 16d NAILS EACH SIDE.
4. WOOD BEAM.
5. JOIST BLOCKING.
6. INSERTED THROUGH SMALL SLIT.
7. INSTALL STRAP WITH ONE END IN ROOF SHEATHING.
8. WITH (12) 10d NAILS TO BEAM, (4) 10d NAILS AT STUDS.
9. EDGE ATTACHMENT U.N.O.
10. LONGER WELD IS ON BENT EDGE OF CLIP.

SHEATHING EDGE ATTACHMENT, U.N.O.
1. WOOD STUD WALL.
2. SHEATHING.
3. DOUBLE 2x TOP PLATE.
4. HSS8x4x1/4.
5. SIMPSON HGA10 AT BLOCKING.
6. MANSION WALL.
7. STOREFRONT MULLION PER MANUFACTURER.
8. MANUFACTURER.
9. INSTALL STRAPS.
10. INSTALL DOUBLE 2x STUDS AT JOIST BLOCKING.
11. SIMPSON MSTC48B3 AT 32" O.C.

KICKER AT PARAPET WALL.
1. 1 1/2" TYP.
2. 3" 1 1/2" 1'-2"
3. 8"
4. 45°

WOOD BEAM AT STOREFRONT MULLION
1. 3 SIDES
2. 3/16
3. HSS8x4x1/4
4. LEGDER.
5. SIMPSON HGA10 AT BLOCKING.
6. MANSION WALL.
7. STOREFRONT MULLION PER MANUFACTURER.
8. MANUFACTURER.
9. INSTALL STRAPS.
10. INSTALL DOUBLE 2x STUDS AT JOIST BLOCKING.
11. SIMPSON MSTC48B3 AT 32" O.C.

WOOD BEAM.
1. DISTANCE:
2. STEEL CHANNEL
3. 1 1/2" DIA. X 3" LAG BOLTS.
4. JOIST BLOCKING.
5. INSTALL STRAP WITH ONE END IN ROOF SHEATHING.
6. INSTALL STRAP WITH ONE END IN ROOF SHEATHING.
7. INSTALL STRAP WITH ONE END IN ROOF SHEATHING.
8. INSTALL STRAP WITH ONE END IN ROOF SHEATHING.
9. INSTALL STRAP WITH ONE END IN ROOF SHEATHING.
10. INSTALL STRAP WITH ONE END IN ROOF SHEATHING.
11. INSTALL STRAP WITH ONE END IN ROOF SHEATHING.
12. INSTALL STRAP WITH ONE END IN ROOF SHEATHING.

WOOD JOIST AT WOOD STUD/WALL WITH STRAP LOCATION.
1. WOOD STUD WALL.
2. DOUBLE 2x TOP PLATE.
3. 1/4" CAP PLATE.
4. INSTALL STRAP WITH ONE END IN ROOF SHEATHING.
5. INSTALL STRAP WITH ONE END IN ROOF SHEATHING.
6. INSTALL STRAP WITH ONE END IN ROOF SHEATHING.
7. INSTALL STRAP WITH ONE END IN ROOF SHEATHING.
8. INSTALL STRAP WITH ONE END IN ROOF SHEATHING.
9. INSTALL STRAP WITH ONE END IN ROOF SHEATHING.
10. INSTALL STRAP WITH ONE END IN ROOF SHEATHING.
11. INSTALL STRAP WITH ONE END IN ROOF SHEATHING.